Monthly Archives: February 2015

Lockheed Martin’s Skunk Works Donates the EFRC an HK36

In February, Lockheed-Martin’s Skunk Works showed a great amount of generosity to Embry-Riddle. The Advanced Development Division of the Aerospace Industry leader provided the Diamond HK36 to Eagle Flight through a research partnership with the University that Dr. Pat Anderson will be leading over the coming months. The delivery of the aircraft to EFRC is shown below.

 

 

By |February 26th, 2015|Blog|0 Comments|

ERAU AIAA Student Branch Secretary wins Runner-Up in Twitter Contest

Earlier this year, the Embry-Riddle American Institute of Aeronautics and Astronautics (AIAA) Student Branch attended the annual SciTech Conference which was held in Kissimmee, Florida in January. It has become a tradition that a competition is held among the conference attendees to make credible, legitimate tweets about events going on at the conference.

This year, the ERAU Branch’s Secretary, Kevin Leong, won second place in the contest out of the thousands in attendance. Mr. Leong is pictured below with the other high-placing participants and Dr. Sandra Magnus, former Astronaut and current Executive Director of the AIAA.

By |February 10th, 2015|Blog|0 Comments|

Guest Speaker – Dr. George T. Flowers

On January 27th, the Aerospace Engineering Department here at Embry-Riddle hosted Dr. Flowers for his presentation on the “Development, Implementation, and Testing of an Adaptive Disturbance Rejection Controller for magnetic Bearing Supported Rotor Systems.” 

Magnetic bearings offer a number of advantages over conventional rolling element bearings. They provide support for rotating systems through magnetic levitation rather than by mechanical contact, nearly eliminating the energy losses attributable to friction in standard bearings. Low power consumption is one characteristic of magnetic bearings that has encouraged their use in an increasing number of applications. Another is the ability to use the bearing itself as an actuator in a controller that can alter the orbit of the rotating system within the bearing to reduce or eliminate the detrimental effects of disturbances acting on the system. In addition, controller outputs can potentially be used as an indicator of the general health or integrity of the system.

This work details the development of an adaptive disturbance rejection controller for a magnetic bearing system that is capable of suppressing disturbances acting at synchronous and asynchronous frequencies resulting from rotating imbalances and base motion. The work was based on an existing adaptive controller that formed part of the overall control system for a magnetically supported  rotor and flywheel. The development of the controller made extensive use of system modeling techniques and model-in-the-loop simulations. The adaptive controller was shown to produce excellent disturbance rejection and vibration suppression. The capabilities of the controller were demonstrated with software simulations, simulated disturbances and physical changes in the balance of the rotor and flywheel.

 

George T. Flowers received a B.S. in mechanical engineering from Auburn   University in 1984, and M.S. and Ph.D. degrees, both in mechanical   engineering, from […]

By |February 5th, 2015|Blog|0 Comments|