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. APEP Mission Overview
Abstract:

Solar eclipses present a truly unique opportunity to study the effects of a supersonic cooling shadow and its
modulation of the structure and energetics of the 1onosphere-thermosphere system. APEP (Atmospheric Perturbations
around Eclipse Path) is an eclipse rocket campaign that launched 3 rockets from White Sands Missile Range during
the Oct 2023 annular eclipse, and the recovered 3 rockets will be relaunched from the Wallops Flight Facility during
the April 2024 total solar eclipse. This campaign will be the first simultaneous multipoint spatio-temporal in-situ
observations of electrodynamics and neutral dynamics associated with solar eclipses. For each eclipse, first of the
three instrumented rockets will be launched ~35-45 minutes before peak eclipse, second at peak local eclipse, third
~35-45 minutes after peak eclipse. The launches were be supported by ground-based observations from AFRL
Digisondes and meteor wind radar for WSMR launch and by VIPIR Dynasonde and Millstone ISR for WFF launch.
Observations will be used to constrain comprehensive modeling during data analysis.

This poster presents preliminary results from WSMR launches in Oct 2023.
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Millstone-Hill digisonde shows increased perturbations superimposed on
large scale changes in the different vertical layers of the ionosphere on
eclipse day (red) versus a control day (black). [Goncharenko et al., 2018]

Differential TEC keograms for the solar eclipse of 2017 showing (a)
TIDs [Coster et al., 2017] and (b) bow waves [Zhang et al., 2017]

Figure 3
Past observations from 2017 Total Eclipse

Il. In-situ Measurements
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Four payloads were ejected from each
rocket. Three from ERAU and one from

Dartmouth. The

ERAU

subpayloads

carried a fixed bias Langmuir probe.
Figure 5 shows that all 3 ERAU ejected

payloads

relatively  similar

density,

from the same rocket saw

where as

subpayloads ejected from different rockets
matched the profiles as seen by the SLP

on the main payload.

swept as 10 Hz, the
density measurements

While SLP was
subpayloads gave
at 5 kHz, thereby

making them suitable to see smallest scale

perturbations.
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Figure 4
Sweeping Langmuir probe derived absolute plasma densities and electron temperature.
The IV curves are low noise, with little spin modulation, and almost no hysteresis.
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Figure 5
Plasma density profiles from ejected Subpayloads.
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Plasma density CWT spectra profiles from ejected Subpayloads.
Continuous Wavelet Transform of the ejected Subpayload #1 from all 3 rockets shows structure around 100 km.

This 1s consistent with activity seen by the meteor radar around same altitudes. The 387 and 388 ejected

subpayloads additionally show structure at the bottom side of the F-region around 150 km 1n altitude. More work,
including simulations and modelling are planned to investigate these features.

APEP carried cold cathode 1onization
gauges. First plot shows no-ram factor

applied raw

measurements.

After

applying the ram factor corrections we
study the relative variations between the
three flights and compare them to MSIS

variations across sunrise and

sunset.

MSIS 2.0 runs are half hour before and
after sunrise and sunset for the day of Oct
14, 2023. Relative density was computed
comparing the change in total density

(g/cc). The general

trends match and

preliminarily indicate wave activity.

In the magnetometer data from all three
rocket payloads, there were no features
indicative of any significant field aligned

current activity. The
right under 100 km 1s

fluctuation seen
a mode change 1n

the 1onization gauge from Cold Cathode
to Pirani. The Mag was just over one foot
away from the IG and sensitive enough

to catch that transition.
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IG raw density data and relative eclipse variation comparison to

MSIS variations around sunrise/sunset
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lll. Ground Based Measurements
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Figure 9
Digisonde altitude profiles during the three launches, as well as fokF2 for the entire day
1 WS833 SULF Digisonde
There were two Tx/Rx Digisondes operated by AFRL. One was located at
11 r . . . .
Kirtland and another at SULF site. See Figure 1for mapped locations. A Rx
10 . . . .
only site was also placed at the LC-36 launch location. This should give us
~N 9r . . . .
I two vertical profiles and two oblique mid-point profiles, as well as skymaps.
Q The analysis work 1s continuing. Shown to the left 1s the variation of the
L 7F . .. . .
fOF2 as seen by the SULF site Digisonde. And shown on top in Fig 9 are the
6 . . .
three profiles during the launch times for 386, 387 and 388 vehicles. The
5L . . . . .
measurements are consistent with in-situ observations.
4 | N | | - | 1 |
00:00 04:00 08:00 12:00 16:00 20:00 24:00
UTC Oct 14, 2023
up (mys) vy (mys) Wy (myés) j Uy {mis) 100 vo (mys) 100 Wy (mis)
: ! | e : ! ] } : i i .:l: ) gt gy T _::n ; _?:n : i T
u, (s s v, (misfkm) coe w, (musk) cis B . “f_':g_fj'_sl"'r"kl_"m = 2 Wy @%ﬂrﬂ_"_ S . o , (misfm)
- RN - y o _we § s Ay _—
E 0z g Loz g noz g - 0.2 _; - D¢ ;
-::: | I}u j .‘ | —— ‘ L oo : ium Jj 80 ! > i inn 3 L] - Hac g
:ﬁ -2 % . - ‘ L 0.2 ‘—E -002 & - -0.2 : ¥ -0 E
H::';.- . " | 1 | ; . - e ; -0 ] . , . -4 - -4 ] i )
- Ly I*Jr-H_fsfslkmjl o i Wy ifrrf.-"s'l."f:m] o o o IiJrTucs:E m} P 2 v,_fﬂﬁc.sfﬂ%ﬂ = i Wy tln’cw's'.a"‘rliml
_1oo : ) oo %, . P - ]
- iy w § ol w oA e : 4
:% i 0.2 % 0.2 % —0.02 - - —.u 2 : » ’ - ;ul 2 ‘%
st | o Pt ot S . Sl
2 104 i 2 :z = _ 1901 = = - - ;: . ‘ - - ?T .
i B: ;: . e ] w ’ i .'H'.-:'.'I 2:00 a2:0a -::D i;l ] Hulxl L] :; :_l: - -“-"‘- ' x X _1: :_l: - ; . _:n i- t d

2023-0ck-14

Figure 10
SIMONe Meteor Wind Radar mean 4-hour wind gradients and residual gradients
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SIMONe Meteor Wind Radar was operated at Kirtland AFB with four receivers spread around (See Figure 1). The plots
above show the mean 4-hour wind gradients and residual gradients on eclipse day. The winds that day were highly dynamic
and there 1s an interesting signature at upper altitudes around the time of the eclipse although 1t 1s uncertain whether this 1s

due to the eclipse.

lll. 3D GEMINI Simulations

Methodology:
= 28-hour 3D GEMINI model simulation starting from a 350 350
day before the eclipse \_
* Simple eclipse lat/lon mask applied to GEMINI with
basic time dependence 097 %7
*= Results sampled onto a geographic grid for comparisons |
to campaign data = 250 1 250 -
™ to - 30 min.
) to
Notable points: ;ﬁ . . £ + 30 min.
* Density roughly consistent with rocket results ©
illustrating rapid erosion of F1-region during eclipse
* Temperatures reduce during eclipse as in the data; 150 - 150 -
however, the model 1s overestimating these quite a lot.
We think this 1s due to poor EUV specifications in the 100 - 100 -
model. 100 10t 100 0 500 1000 1500 2000
* Numerous approximations made with the purpose of Ne (M~3) Te (K)
simply testing the model's ability to simulate an eclipse -
it appears to work well which justifies further, more Figure 11
complicated treatment of the eclipse input based on EUV Vertical profiles over WSMR Lat-Lon after
observations and a fully 3D mask. a 28-hour 3D GEMINI run
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