Radial Equilibrium

Deriving the Simple Radial Equilibrium Equation

Inviscid Flow:

radialequilibrium_clip_image014_0001

Steady Axial Inviscid Flow:

radialequilibrium_clip_image004

Axisymmetric Inviscid Flow:

(Effect of discrete blades not transmitted to flow; the assumption of axial symmetry enables the designer to fix attention on the radial distribution of the gas properties at a station between blade rows by averaging out the gas-property variations in the circumferential direction.)

radialequilibrium_clip_image006

Steady Axisymmetric Inviscid Flow:

radialequilibrium_clip_image008

Steady Axial Axisymmetric Inviscid Flow with Negligible Radial Blade Force:

radialequilibrium_clip_image010

These assumptions reduce the momentum equation to:

radialequilibrium_clip_image012

Free Vortex

Choosing free vortex where:

radialequilibrium_clip_image002_0001

Forced Vortex

In a forced vortex, the fluid rotates as a solid body (no shear). The motion can be realized by placing a dish of fluid on a turntable rotating at x radians/second.

Constant Reaction/First Power

radialequilibrium_clip_image002_0003

n=1, so that

radialequilibrium_clip_image004_0001

Using the equation above, and assuming radialequilibrium_clip_image006_0001,radialequilibrium_clip_image008_0001, it can be integrated at station 1 and 2 to find the resulting values of radialequilibrium_clip_image010_0001 at any radius depending on the n values.

Using n=2 as an example in the general whirl velocity,

radialequilibrium_clip_image012_0002

radialequilibrium_clip_image014_0001

radialequilibrium_clip_image016_0000

Integrating from mean radius to any radius r,

radialequilibrium_clip_image018_0000,   radialequilibrium_clip_image020_0000

n=1

Hence,

radialequilibrium_clip_image022_0000

Replace

radialequilibrium_clip_image024_0000 where radialequilibrium_clip_image026_0000 with radialequilibrium_clip_image028_0000=1

This gives:

radialequilibrium_clip_image030_0000

radialequilibrium_clip_image032

Where radialequilibrium_clip_image034

And so radialequilibrium_clip_image036

Degree of Reaction

From the radialequilibrium_clip_image038 definition

radialequilibrium_clip_image040

radialequilibrium_clip_image036_0000

radialequilibrium_clip_image042

radialequilibrium_clip_image044

radialequilibrium_clip_image046

Therefore,

radialequilibrium_clip_image048.

Substituting radialequilibrium_clip_image050 results in

radialequilibrium_clip_image052.

Exponential

radialequilibrium_clip_image002_0002

n=0, so that

radialequilibrium_clip_image004_0000

Following the same integration procedure as in n=1 gives:

radialequilibrium_clip_image006_0000

radialequilibrium_clip_image008_0000

Where radialequilibrium_clip_image010_0000

And so radialequilibrium_clip_image012_0000radialequilibrium_clip_image014_0000

Degree of Reaction

From the radialequilibrium_clip_image038 definition

radialequilibrium_clip_image040

radialequilibrium_clip_image012_0000radialequilibrium_clip_image014_0000

radialequilibrium_clip_image020

radialequilibrium_clip_image022

radialequilibrium_clip_image024

Therefore,

radialequilibrium_clip_image026

 

Substituting radialequilibrium_clip_image028 gives

radialequilibrium_clip_image030.